Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Self-attention Dual Embedding for Graphs with Heterophily (2305.18385v2)

Published 28 May 2023 in cs.LG and cs.SI

Abstract: Graph Neural Networks (GNNs) have been highly successful for the node classification task. GNNs typically assume graphs are homophilic, i.e. neighboring nodes are likely to belong to the same class. However, a number of real-world graphs are heterophilic, and this leads to much lower classification accuracy using standard GNNs. In this work, we design a novel GNN which is effective for both heterophilic and homophilic graphs. Our work is based on three main observations. First, we show that node features and graph topology provide different amounts of informativeness in different graphs, and therefore they should be encoded independently and prioritized in an adaptive manner. Second, we show that allowing negative attention weights when propagating graph topology information improves accuracy. Finally, we show that asymmetric attention weights between nodes are helpful. We design a GNN which makes use of these observations through a novel self-attention mechanism. We evaluate our algorithm on real-world graphs containing thousands to millions of nodes and show that we achieve state-of-the-art results compared to existing GNNs. We also analyze the effectiveness of the main components of our design on different graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.