Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Benchmarking and modeling of analog and digital SRAM in-memory computing architectures (2305.18335v1)

Published 25 May 2023 in cs.AR, eess.IV, and eess.SP

Abstract: In-memory-computing is emerging as an efficient hardware paradigm for deep neural network accelerators at the edge, enabling to break the memory wall and exploit massive computational parallelism. Two design models have surged: analog in-memory-computing (AIMC) and digital in-memory-computing (DIMC), offering a different design space in terms of accuracy, efficiency and dataflow flexibility. This paper targets the fair comparison and benchmarking of both approaches to guide future designs, through a.) an overview of published architectures; b.) an analytical cost model for energy and throughput; c.) scheduling of workloads on a variety of modeled IMC architectures for end-to-end network efficiency analysis, offering valuable workload-hardware co-design insights.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.