Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-behavior Self-supervised Learning for Recommendation (2305.18238v1)

Published 22 May 2023 in cs.IR and cs.LG

Abstract: Modern recommender systems often deal with a variety of user interactions, e.g., click, forward, purchase, etc., which requires the underlying recommender engines to fully understand and leverage multi-behavior data from users. Despite recent efforts towards making use of heterogeneous data, multi-behavior recommendation still faces great challenges. Firstly, sparse target signals and noisy auxiliary interactions remain an issue. Secondly, existing methods utilizing self-supervised learning (SSL) to tackle the data sparsity neglect the serious optimization imbalance between the SSL task and the target task. Hence, we propose a Multi-Behavior Self-Supervised Learning (MBSSL) framework together with an adaptive optimization method. Specifically, we devise a behavior-aware graph neural network incorporating the self-attention mechanism to capture behavior multiplicity and dependencies. To increase the robustness to data sparsity under the target behavior and noisy interactions from auxiliary behaviors, we propose a novel self-supervised learning paradigm to conduct node self-discrimination at both inter-behavior and intra-behavior levels. In addition, we develop a customized optimization strategy through hybrid manipulation on gradients to adaptively balance the self-supervised learning task and the main supervised recommendation task. Extensive experiments on five real-world datasets demonstrate the consistent improvements obtained by MBSSL over ten state-of-the art (SOTA) baselines. We release our model implementation at: https://github.com/Scofield666/MBSSL.git.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.