Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Semi-Supervised Learning Approach for Ranging Error Mitigation Based on UWB Waveform (2305.18208v1)

Published 23 May 2023 in eess.SP, cs.AI, cs.LG, and stat.AP

Abstract: Localization systems based on ultra-wide band (UWB) measurements can have unsatisfactory performance in harsh environments due to the presence of non-line-of-sight (NLOS) errors. Learning-based methods for error mitigation have shown great performance improvement via directly exploiting the wideband waveform instead of handcrafted features. However, these methods require data samples fully labeled with actual measurement errors for training, which leads to time-consuming data collection. In this paper, we propose a semi-supervised learning method based on variational Bayes for UWB ranging error mitigation. Combining deep learning techniques and statistic tools, our method can efficiently accumulate knowledge from both labeled and unlabeled data samples. Extensive experiments illustrate the effectiveness of the proposed method under different supervision rates, and the superiority compared to other fully supervised methods even at a low supervision rate.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.