Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exploration of Efficient End-to-End ASR using Discretized Input from Self-Supervised Learning (2305.18108v1)

Published 29 May 2023 in cs.SD and eess.AS

Abstract: Self-supervised learning (SSL) of speech has shown impressive results in speech-related tasks, particularly in automatic speech recognition (ASR). While most methods employ the output of intermediate layers of the SSL model as real-valued features for downstream tasks, there is potential in exploring alternative approaches that use discretized token sequences. This approach offers benefits such as lower storage requirements and the ability to apply techniques from natural language processing. In this paper, we propose a new protocol that utilizes discretized token sequences in ASR tasks, which includes de-duplication and sub-word modeling to enhance the input sequence. It reduces computational cost by decreasing the length of the sequence. Our experiments on the LibriSpeech dataset demonstrate that our proposed protocol performs competitively with conventional ASR systems using continuous input features, while reducing computational and storage costs.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.