Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Forensic Video Steganalysis in Spatial Domain by Noise Residual Convolutional Neural Network (2305.18070v1)

Published 29 May 2023 in cs.CV and cs.CR

Abstract: This research evaluates a convolutional neural network (CNN) based approach to forensic video steganalysis. A video steganography dataset is created to train a CNN to conduct forensic steganalysis in the spatial domain. We use a noise residual convolutional neural network to detect embedded secrets since a steganographic embedding process will always result in the modification of pixel values in video frames. Experimental results show that the CNN-based approach can be an effective method for forensic video steganalysis and can reach a detection rate of 99.96%. Keywords: Forensic, Steganalysis, Deep Steganography, MSU StegoVideo, Convolutional Neural Networks

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.