Papers
Topics
Authors
Recent
2000 character limit reached

Forensic Video Steganalysis in Spatial Domain by Noise Residual Convolutional Neural Network (2305.18070v1)

Published 29 May 2023 in cs.CV and cs.CR

Abstract: This research evaluates a convolutional neural network (CNN) based approach to forensic video steganalysis. A video steganography dataset is created to train a CNN to conduct forensic steganalysis in the spatial domain. We use a noise residual convolutional neural network to detect embedded secrets since a steganographic embedding process will always result in the modification of pixel values in video frames. Experimental results show that the CNN-based approach can be an effective method for forensic video steganalysis and can reach a detection rate of 99.96%. Keywords: Forensic, Steganalysis, Deep Steganography, MSU StegoVideo, Convolutional Neural Networks

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.