Papers
Topics
Authors
Recent
Search
2000 character limit reached

Pedestrian detection with high-resolution event camera

Published 29 May 2023 in cs.CV and eess.IV | (2305.18008v1)

Abstract: Despite the dynamic development of computer vision algorithms, the implementation of perception and control systems for autonomous vehicles such as drones and self-driving cars still poses many challenges. A video stream captured by traditional cameras is often prone to problems such as motion blur or degraded image quality due to challenging lighting conditions. In addition, the frame rate - typically 30 or 60 frames per second - can be a limiting factor in certain scenarios. Event cameras (DVS -- Dynamic Vision Sensor) are a potentially interesting technology to address the above mentioned problems. In this paper, we compare two methods of processing event data by means of deep learning for the task of pedestrian detection. We used a representation in the form of video frames, convolutional neural networks and asynchronous sparse convolutional neural networks. The results obtained illustrate the potential of event cameras and allow the evaluation of the accuracy and efficiency of the methods used for high-resolution (1280 x 720 pixels) footage.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.