Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving the Generalizability of Trajectory Prediction Models with Frenet-Based Domain Normalization (2305.17965v3)

Published 29 May 2023 in cs.RO

Abstract: Predicting the future trajectories of nearby objects plays a pivotal role in Robotics and Automation such as autonomous driving. While learning-based trajectory prediction methods have achieved remarkable performance on public benchmarks, the generalization ability of these approaches remains questionable. The poor generalizability on unseen domains, a well-recognized defect of data-driven approaches, can potentially harm the real-world performance of trajectory prediction models. We are thus motivated to improve generalization ability of models instead of merely pursuing high accuracy on average. Due to the lack of benchmarks for quantifying the generalization ability of trajectory predictors, we first construct a new benchmark called argoverse-shift, where the data distributions of domains are significantly different. Using this benchmark for evaluation, we identify that the domain shift problem seriously hinders the generalization of trajectory predictors since state-of-the-art approaches suffer from severe performance degradation when facing those out-of-distribution scenes. To enhance the robustness of models against domain shift problems, we propose a plug-and-play strategy for domain normalization in trajectory prediction. Our strategy utilizes the Frenet coordinate frame for modeling and can effectively narrow the domain gap of different scenes caused by the variety of road geometry and topology. Experiments show that our strategy noticeably boosts the prediction performance of the state-of-the-art in domains that were previously unseen to the models, thereby improving the generalization ability of data-driven trajectory prediction methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube