Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Complex CNN CSI Enhancer for Integrated Sensing and Communications (2305.17938v2)

Published 29 May 2023 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we propose a novel complex convolutional neural network (CNN) CSI enhancer for integrated sensing and communications (ISAC), which exploits the correlation between the sensing parameters (such as angle-of-arrival and range) and the channel state information (CSI) to significantly improve the CSI estimation accuracy and further enhance the sensing accuracy. Within the CNN CSI enhancer, we use the complex-valued computation layers to form the CNN, which maintains the phase information of CSI. We also transform the CSI into the sparse angle-delay domain, leading to heatmap images with prominent peaks that can be efficiently processed by CNN. Based on the enhanced CSI outputs, we further propose a novel biased fast Fourier transform (FFT)-based sensing scheme for improving the range sensing accuracy, by artificially introducing phase biasing terms. Extensive simulation results show that the ISAC complex CNN CSI enhancer can converge within 30 training epochs. The normalized mean square error (NMSE) of its CSI estimates is about 17 dB lower than that of the linear minimum mean square error (LMMSE) estimator, and the bit error rate (BER) of demodulation using the enhanced CSI estimation approaches that with perfect CSI. Finally, the range estimation MSE of the proposed biased FFT-based sensing method approaches that of the subspace-based sensing method, at a much lower complexity.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.