Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LowDINO -- A Low Parameter Self Supervised Learning Model (2305.17791v1)

Published 28 May 2023 in cs.CV

Abstract: This research aims to explore the possibility of designing a neural network architecture that allows for small networks to adopt the properties of huge networks, which have shown success in self-supervised learning (SSL), for all the downstream tasks like image classification, segmentation, etc. Previous studies have shown that using convolutional neural networks (ConvNets) can provide inherent inductive bias, which is crucial for learning representations in deep learning models. To reduce the number of parameters, attention mechanisms are utilized through the usage of MobileViT blocks, resulting in a model with less than 5 million parameters. The model is trained using self-distillation with momentum encoder and a student-teacher architecture is also employed, where the teacher weights use vision transformers (ViTs) from recent SOTA SSL models. The model is trained on the ImageNet1k dataset. This research provides an approach for designing smaller, more efficient neural network architectures that can perform SSL tasks comparable to heavy models

Summary

We haven't generated a summary for this paper yet.