Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

RefBERT: A Two-Stage Pre-trained Framework for Automatic Rename Refactoring (2305.17708v1)

Published 28 May 2023 in cs.SE

Abstract: Refactoring is an indispensable practice of improving the quality and maintainability of source code in software evolution. Rename refactoring is the most frequently performed refactoring that suggests a new name for an identifier to enhance readability when the identifier is poorly named. However, most existing works only identify renaming activities between two versions of source code, while few works express concern about how to suggest a new name. In this paper, we study automatic rename refactoring on variable names, which is considered more challenging than other rename refactoring activities. We first point out the connections between rename refactoring and various prevalent learning paradigms and the difference between rename refactoring and general text generation in natural language processing. Based on our observations, we propose RefBERT, a two-stage pre-trained framework for rename refactoring on variable names. RefBERT first predicts the number of sub-tokens in the new name and then generates sub-tokens accordingly. Several techniques, including constrained masked LLMing, contrastive learning, and the bag-of-tokens loss, are incorporated into RefBERT to tailor it for automatic rename refactoring on variable names. Through extensive experiments on our constructed refactoring datasets, we show that the generated variable names of RefBERT are more accurate and meaningful than those produced by the existing method.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.