Translatotron 3: Speech to Speech Translation with Monolingual Data (2305.17547v3)
Abstract: This paper presents Translatotron 3, a novel approach to unsupervised direct speech-to-speech translation from monolingual speech-text datasets by combining masked autoencoder, unsupervised embedding mapping, and back-translation. Experimental results in speech-to-speech translation tasks between Spanish and English show that Translatotron 3 outperforms a baseline cascade system, reporting $18.14$ BLEU points improvement on the synthesized Unpaired-Conversational dataset. In contrast to supervised approaches that necessitate real paired data, or specialized modeling to replicate para-/non-linguistic information such as pauses, speaking rates, and speaker identity, Translatotron 3 showcases its capability to retain it. Audio samples can be found at http://google-research.github.io/lingvo-lab/translatotron3
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.