Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Locally Identifying Coloring of Cartesian Product and Tensor Product of Graphs (2305.17536v2)

Published 27 May 2023 in math.CO and cs.DM

Abstract: For a positive integer $k$, a proper $k$-coloring of a graph $G$ is a mapping $f: V(G) \rightarrow {1,2, \ldots, k}$ such that $f(u) \neq f(v)$ for each edge $uv$ of $G$. The smallest integer $k$ for which there is a proper $k$-coloring of $G$ is called the chromatic number of $G$, denoted by $\chi(G)$. A locally identifying coloring (for short, lid-coloring) of a graph $G$ is a proper $k$-coloring of $G$ such that every pair of adjacent vertices with distinct closed neighborhoods has distinct set of colors in their closed neighborhoods. The smallest integer $k$ such that $G$ has a lid-coloring with $k$ colors is called locally identifying chromatic number (for short, lid-chromatic number) of $G$, denoted by $\chi_{lid}(G)$. This paper studies the lid-coloring of the Cartesian product and tensor product of two graphs. We prove that if $G$ and $H$ are two connected graphs having at least two vertices then (a) $\chi_{lid}(G \square H) \leq \chi(G) \chi(H)-1$ and (b) $\chi_{lid}(G \times H) \leq \chi(G) \chi(H)$. Here $G \square H$ and $G \times H$ denote the Cartesian and tensor products of $G$ and $H$ respectively. We determine the lid-chromatic number of $C_m \square P_n$, $C_m \square C_n$, $P_m \times P_n$, $C_m \times P_n$ and $C_m \times C_n$, where $C_m$ and $P_n$ denote a cycle and a path on $m$ and $n$ vertices respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.