Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Federated Empirical Risk Minimization via Second-Order Method (2305.17482v1)

Published 27 May 2023 in cs.LG and cs.DC

Abstract: Many convex optimization problems with important applications in machine learning are formulated as empirical risk minimization (ERM). There are several examples: linear and logistic regression, LASSO, kernel regression, quantile regression, $p$-norm regression, support vector machines (SVM), and mean-field variational inference. To improve data privacy, federated learning is proposed in machine learning as a framework for training deep learning models on the network edge without sharing data between participating nodes. In this work, we present an interior point method (IPM) to solve a general ERM problem under the federated learning setting. We show that the communication complexity of each iteration of our IPM is $\tilde{O}(d{3/2})$, where $d$ is the dimension (i.e., number of features) of the dataset.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.