Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Modeling Dynamic Heterogeneous Graph and Node Importance for Future Citation Prediction (2305.17417v1)

Published 27 May 2023 in cs.DL, cs.LG, and physics.soc-ph

Abstract: Accurate citation count prediction of newly published papers could help editors and readers rapidly figure out the influential papers in the future. Though many approaches are proposed to predict a paper's future citation, most ignore the dynamic heterogeneous graph structure or node importance in academic networks. To cope with this problem, we propose a Dynamic heterogeneous Graph and Node Importance network (DGNI) learning framework, which fully leverages the dynamic heterogeneous graph and node importance information to predict future citation trends of newly published papers. First, a dynamic heterogeneous network embedding module is provided to capture the dynamic evolutionary trends of the whole academic network. Then, a node importance embedding module is proposed to capture the global consistency relationship to figure out each paper's node importance. Finally, the dynamic evolutionary trend embeddings and node importance embeddings calculated above are combined to jointly predict the future citation counts of each paper, by a log-normal distribution model according to multi-faced paper node representations. Extensive experiments on two large-scale datasets demonstrate that our model significantly improves all indicators compared to the SOTA models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.