Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sharpened Lazy Incremental Quasi-Newton Method (2305.17283v3)

Published 26 May 2023 in math.OC and cs.LG

Abstract: The problem of minimizing the sum of $n$ functions in $d$ dimensions is ubiquitous in machine learning and statistics. In many applications where the number of observations $n$ is large, it is necessary to use incremental or stochastic methods, as their per-iteration cost is independent of $n$. Of these, Quasi-Newton (QN) methods strike a balance between the per-iteration cost and the convergence rate. Specifically, they exhibit a superlinear rate with $O(d2)$ cost in contrast to the linear rate of first-order methods with $O(d)$ cost and the quadratic rate of second-order methods with $O(d3)$ cost. However, existing incremental methods have notable shortcomings: Incremental Quasi-Newton (IQN) only exhibits asymptotic superlinear convergence. In contrast, Incremental Greedy BFGS (IGS) offers explicit superlinear convergence but suffers from poor empirical performance and has a per-iteration cost of $O(d3)$. To address these issues, we introduce the Sharpened Lazy Incremental Quasi-Newton Method (SLIQN) that achieves the best of both worlds: an explicit superlinear convergence rate, and superior empirical performance at a per-iteration $O(d2)$ cost. SLIQN features two key changes: first, it incorporates a hybrid strategy of using both classic and greedy BFGS updates, allowing it to empirically outperform both IQN and IGS. Second, it employs a clever constant multiplicative factor along with a lazy propagation strategy, which enables it to have a cost of $O(d2)$. Additionally, our experiments demonstrate the superiority of SLIQN over other incremental and stochastic Quasi-Newton variants and establish its competitiveness with second-order incremental methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube