Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sharpened Lazy Incremental Quasi-Newton Method (2305.17283v3)

Published 26 May 2023 in math.OC and cs.LG

Abstract: The problem of minimizing the sum of $n$ functions in $d$ dimensions is ubiquitous in machine learning and statistics. In many applications where the number of observations $n$ is large, it is necessary to use incremental or stochastic methods, as their per-iteration cost is independent of $n$. Of these, Quasi-Newton (QN) methods strike a balance between the per-iteration cost and the convergence rate. Specifically, they exhibit a superlinear rate with $O(d2)$ cost in contrast to the linear rate of first-order methods with $O(d)$ cost and the quadratic rate of second-order methods with $O(d3)$ cost. However, existing incremental methods have notable shortcomings: Incremental Quasi-Newton (IQN) only exhibits asymptotic superlinear convergence. In contrast, Incremental Greedy BFGS (IGS) offers explicit superlinear convergence but suffers from poor empirical performance and has a per-iteration cost of $O(d3)$. To address these issues, we introduce the Sharpened Lazy Incremental Quasi-Newton Method (SLIQN) that achieves the best of both worlds: an explicit superlinear convergence rate, and superior empirical performance at a per-iteration $O(d2)$ cost. SLIQN features two key changes: first, it incorporates a hybrid strategy of using both classic and greedy BFGS updates, allowing it to empirically outperform both IQN and IGS. Second, it employs a clever constant multiplicative factor along with a lazy propagation strategy, which enables it to have a cost of $O(d2)$. Additionally, our experiments demonstrate the superiority of SLIQN over other incremental and stochastic Quasi-Newton variants and establish its competitiveness with second-order incremental methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.