Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Model-Based Solution to the Offline Multi-Agent Reinforcement Learning Coordination Problem (2305.17198v2)

Published 26 May 2023 in cs.LG, cs.AI, and cs.MA

Abstract: Training multiple agents to coordinate is an essential problem with applications in robotics, game theory, economics, and social sciences. However, most existing Multi-Agent Reinforcement Learning (MARL) methods are online and thus impractical for real-world applications in which collecting new interactions is costly or dangerous. While these algorithms should leverage offline data when available, doing so gives rise to what we call the offline coordination problem. Specifically, we identify and formalize the strategy agreement (SA) and the strategy fine-tuning (SFT) coordination challenges, two issues at which current offline MARL algorithms fail. Concretely, we reveal that the prevalent model-free methods are severely deficient and cannot handle coordination-intensive offline multi-agent tasks in either toy or MuJoCo domains. To address this setback, we emphasize the importance of inter-agent interactions and propose the very first model-based offline MARL method. Our resulting algorithm, Model-based Offline Multi-Agent Proximal Policy Optimization (MOMA-PPO) generates synthetic interaction data and enables agents to converge on a strategy while fine-tuning their policies accordingly. This simple model-based solution solves the coordination-intensive offline tasks, significantly outperforming the prevalent model-free methods even under severe partial observability and with learned world models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.