Papers
Topics
Authors
Recent
2000 character limit reached

Benchmarking state-of-the-art gradient boosting algorithms for classification (2305.17094v1)

Published 26 May 2023 in cs.LG

Abstract: This work explores the use of gradient boosting in the context of classification. Four popular implementations, including original GBM algorithm and selected state-of-the-art gradient boosting frameworks (i.e. XGBoost, LightGBM and CatBoost), have been thoroughly compared on several publicly available real-world datasets of sufficient diversity. In the study, special emphasis was placed on hyperparameter optimization, specifically comparing two tuning strategies, i.e. randomized search and Bayesian optimization using the Tree-stuctured Parzen Estimator. The performance of considered methods was investigated in terms of common classification accuracy metrics as well as runtime and tuning time. Additionally, obtained results have been validated using appropriate statistical testing. An attempt was made to indicate a gradient boosting variant showing the right balance between effectiveness, reliability and ease of use.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.