Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Justification vs. Transparency: Why and How Visual Explanations in a Scientific Literature Recommender System (2305.17034v1)

Published 26 May 2023 in cs.IR, cs.AI, and cs.HC

Abstract: Significant attention has been paid to enhancing recommender systems (RS) with explanation facilities to help users make informed decisions and increase trust in and satisfaction with the RS. Justification and transparency represent two crucial goals in explainable recommendation. Different from transparency, which faithfully exposes the reasoning behind the recommendation mechanism, justification conveys a conceptual model that may differ from that of the underlying algorithm. An explanation is an answer to a question. In explainable recommendation, a user would want to ask questions (referred to as intelligibility types) to understand results given by the RS. In this paper, we identify relationships between Why and How explanation intelligibility types and the explanation goals of justification and transparency. We followed the Human-Centered Design (HCD) approach and leveraged the What-Why-How visualization framework to systematically design and implement Why and How visual explanations in the transparent Recommendation and Interest Modeling Application (RIMA). Furthermore, we conducted a qualitative user study (N=12) to investigate the potential effects of providing Why and How explanations together in an explainable RS on the users' perceptions regarding transparency, trust, and satisfaction. Our study showed qualitative evidence confirming that the choice of the explanation intelligibility types depends on the explanation goal and user type.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.