Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Universal approximation with complex-valued deep narrow neural networks (2305.16910v3)

Published 26 May 2023 in math.FA, cs.LG, and stat.ML

Abstract: We study the universality of complex-valued neural networks with bounded widths and arbitrary depths. Under mild assumptions, we give a full description of those activation functions $\varrho:\mathbb{C}\to \mathbb{C}$ that have the property that their associated networks are universal, i.e., are capable of approximating continuous functions to arbitrary accuracy on compact domains. Precisely, we show that deep narrow complex-valued networks are universal if and only if their activation function is neither holomorphic, nor antiholomorphic, nor $\mathbb{R}$-affine. This is a much larger class of functions than in the dual setting of arbitrary width and fixed depth. Unlike in the real case, the sufficient width differs significantly depending on the considered activation function. We show that a width of $2n+2m+5$ is always sufficient and that in general a width of $max{2n,2m}$ is necessary. We prove, however, that a width of $n+m+3$ suffices for a rich subclass of the admissible activation functions. Here, $n$ and $m$ denote the input and output dimensions of the considered networks. Moreover, for the case of smooth and non-polyharmonic activation functions, we provide a quantitative approximation bound in terms of the depth of the considered networks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets