Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Universal approximation with complex-valued deep narrow neural networks (2305.16910v3)

Published 26 May 2023 in math.FA, cs.LG, and stat.ML

Abstract: We study the universality of complex-valued neural networks with bounded widths and arbitrary depths. Under mild assumptions, we give a full description of those activation functions $\varrho:\mathbb{C}\to \mathbb{C}$ that have the property that their associated networks are universal, i.e., are capable of approximating continuous functions to arbitrary accuracy on compact domains. Precisely, we show that deep narrow complex-valued networks are universal if and only if their activation function is neither holomorphic, nor antiholomorphic, nor $\mathbb{R}$-affine. This is a much larger class of functions than in the dual setting of arbitrary width and fixed depth. Unlike in the real case, the sufficient width differs significantly depending on the considered activation function. We show that a width of $2n+2m+5$ is always sufficient and that in general a width of $max{2n,2m}$ is necessary. We prove, however, that a width of $n+m+3$ suffices for a rich subclass of the admissible activation functions. Here, $n$ and $m$ denote the input and output dimensions of the considered networks. Moreover, for the case of smooth and non-polyharmonic activation functions, we provide a quantitative approximation bound in terms of the depth of the considered networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: