Papers
Topics
Authors
Recent
2000 character limit reached

Error Bounds for Flow Matching Methods (2305.16860v2)

Published 26 May 2023 in stat.ML and cs.LG

Abstract: Score-based generative models are a popular class of generative modelling techniques relying on stochastic differential equations (SDE). From their inception, it was realized that it was also possible to perform generation using ordinary differential equations (ODE) rather than SDE. This led to the introduction of the probability flow ODE approach and denoising diffusion implicit models. Flow matching methods have recently further extended these ODE-based approaches and approximate a flow between two arbitrary probability distributions. Previous work derived bounds on the approximation error of diffusion models under the stochastic sampling regime, given assumptions on the $L2$ loss. We present error bounds for the flow matching procedure using fully deterministic sampling, assuming an $L2$ bound on the approximation error and a certain regularity condition on the data distributions.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 60 likes about this paper.