Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Reminder of its Brittleness: Language Reward Shaping May Hinder Learning for Instruction Following Agents (2305.16621v2)

Published 26 May 2023 in cs.AI, cs.SY, and eess.SY

Abstract: Teaching agents to follow complex written instructions has been an important yet elusive goal. One technique for enhancing learning efficiency is language reward shaping (LRS). Within a reinforcement learning (RL) framework, LRS involves training a reward function that rewards behaviours precisely aligned with given language instructions. We argue that the apparent success of LRS is brittle, and prior positive findings can be attributed to weak RL baselines. Specifically, we identified suboptimal LRS designs that reward partially matched trajectories, and we characterised a novel reward perturbation to capture this issue using the concept of loosening task constraints. We provided theoretical and empirical evidence that agents trained using LRS rewards converge more slowly compared to pure RL agents. Our work highlights the brittleness of existing LRS methods, which has been overlooked in the previous studies.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.