Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counterfactual Probing for the Influence of Affect and Specificity on Intergroup Bias (2305.16409v2)

Published 25 May 2023 in cs.CL and cs.CY

Abstract: While existing work on studying bias in NLP focues on negative or pejorative language use, Govindarajan et al. (2023) offer a revised framing of bias in terms of intergroup social context, and its effects on language behavior. In this paper, we investigate if two pragmatic features (specificity and affect) systematically vary in different intergroup contexts -- thus connecting this new framing of bias to language output. Preliminary analysis finds modest correlations between specificity and affect of tweets with supervised intergroup relationship (IGR) labels. Counterfactual probing further reveals that while neural models finetuned for predicting IGR labels reliably use affect in classification, the model's usage of specificity is inconclusive. Code and data can be found at: https://github.com/venkatasg/intergroup-probing

Citations (1)

Summary

We haven't generated a summary for this paper yet.