Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stecformer: Spatio-temporal Encoding Cascaded Transformer for Multivariate Long-term Time Series Forecasting (2305.16370v1)

Published 25 May 2023 in cs.LG and cs.AI

Abstract: Multivariate long-term time series forecasting is of great application across many domains, such as energy consumption and weather forecasting. With the development of transformer-based methods, the performance of multivariate long-term time series forecasting has been significantly improved, however, the study of spatial features extracting in transformer-based model is rare and the consistency of different prediction periods is unsatisfactory due to the large span. In this work, we propose a complete solution to address these problems in terms of feature extraction and target prediction. For extraction, we design an efficient spatio-temporal encoding extractor including a semi-adaptive graph to acquire sufficient spatio-temporal information. For prediction, we propose a Cascaded Decoding Predictor (CDP) to strengthen the correlation between different intervals, which can also be utilized as a generic component to improve the performance of transformer-based methods. The proposed method, termed as Spatio-temporal Encoding Cascaded Transformer (Stecformer), achieving a notable gap over the baseline model and is comparable with the state-of-the-art performance of transformer-based methods on five benchmark datasets. We hope our attempt will serve as a regular configuration in multivariate long-term time series forecasting in the future.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.