Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Artificial Intelligence-Based Methods for Precision Medicine: Diabetes Risk Prediction (2305.16346v1)

Published 24 May 2023 in cs.LG and cs.AI

Abstract: The rising prevalence of type 2 diabetes mellitus (T2DM) necessitates the development of predictive models for T2DM risk assessment. AI models are being extensively used for this purpose, but a comprehensive review of their advancements and challenges is lacking. This scoping review analyzes existing literature on AI-based models for T2DM risk prediction. Forty studies were included, mainly published in the past four years. Traditional machine learning models were more prevalent than deep learning models. Electronic health records were the most commonly used data source. Unimodal AI models relying on EHR data were prominent, while only a few utilized multimodal models. Both unimodal and multimodal models showed promising performance, with the latter outperforming the former. Internal validation was common, while external validation was limited. Interpretability methods were reported in half of the studies. Few studies reported novel biomarkers, and open-source code availability was limited. This review provides insights into the current state and limitations of AI-based T2DM risk prediction models and highlights challenges for their development and clinical implementation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.