Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

A Distributed Automatic Domain-Specific Multi-Word Term Recognition Architecture using Spark Ecosystem (2305.16343v1)

Published 24 May 2023 in cs.CL and cs.AI

Abstract: Automatic Term Recognition is used to extract domain-specific terms that belong to a given domain. In order to be accurate, these corpus and language-dependent methods require large volumes of textual data that need to be processed to extract candidate terms that are afterward scored according to a given metric. To improve text preprocessing and candidate terms extraction and scoring, we propose a distributed Spark-based architecture to automatically extract domain-specific terms. The main contributions are as follows: (1) propose a novel distributed automatic domain-specific multi-word term recognition architecture built on top of the Spark ecosystem; (2) perform an in-depth analysis of our architecture in terms of accuracy and scalability; (3) design an easy-to-integrate Python implementation that enables the use of Big Data processing in fields such as Computational Linguistics and Natural Language Processing. We prove empirically the feasibility of our architecture by performing experiments on two real-world datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.