Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Collaborative Blind Image Deblurring (2305.16034v1)

Published 25 May 2023 in cs.CV and eess.IV

Abstract: Blurry images usually exhibit similar blur at various locations across the image domain, a property barely captured in nowadays blind deblurring neural networks. We show that when extracting patches of similar underlying blur is possible, jointly processing the stack of patches yields superior accuracy than handling them separately. Our collaborative scheme is implemented in a neural architecture with a pooling layer on the stack dimension. We present three practical patch extraction strategies for image sharpening, camera shake removal and optical aberration correction, and validate the proposed approach on both synthetic and real-world benchmarks. For each blur instance, the proposed collaborative strategy yields significant quantitative and qualitative improvements.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.