Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

NVTC: Nonlinear Vector Transform Coding (2305.16025v1)

Published 25 May 2023 in cs.CV and eess.IV

Abstract: In theory, vector quantization (VQ) is always better than scalar quantization (SQ) in terms of rate-distortion (R-D) performance. Recent state-of-the-art methods for neural image compression are mainly based on nonlinear transform coding (NTC) with uniform scalar quantization, overlooking the benefits of VQ due to its exponentially increased complexity. In this paper, we first investigate on some toy sources, demonstrating that even if modern neural networks considerably enhance the compression performance of SQ with nonlinear transform, there is still an insurmountable chasm between SQ and VQ. Therefore, revolving around VQ, we propose a novel framework for neural image compression named Nonlinear Vector Transform Coding (NVTC). NVTC solves the critical complexity issue of VQ through (1) a multi-stage quantization strategy and (2) nonlinear vector transforms. In addition, we apply entropy-constrained VQ in latent space to adaptively determine the quantization boundaries for joint rate-distortion optimization, which improves the performance both theoretically and experimentally. Compared to previous NTC approaches, NVTC demonstrates superior rate-distortion performance, faster decoding speed, and smaller model size. Our code is available at https://github.com/USTC-IMCL/NVTC

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub