Papers
Topics
Authors
Recent
2000 character limit reached

Smoothed Complexity of SWAP in Local Graph Partitioning (2305.15804v1)

Published 25 May 2023 in cs.DS and cs.CC

Abstract: We give the first quasipolynomial upper bound $\phi n{\text{polylog}(n)}$ for the smoothed complexity of the SWAP algorithm for local Graph Partitioning (also known as Bisection Width), where $n$ is the number of nodes in the graph and $\phi$ is a parameter that measures the magnitude of perturbations applied on its edge weights. More generally, we show that the same quasipolynomial upper bound holds for the smoothed complexity of the 2-FLIP algorithm for any binary Maximum Constraint Satisfaction Problem, including local Max-Cut, for which similar bounds were only known for $1$-FLIP. Our results are based on an analysis of cycles formed in long sequences of double flips, showing that it is unlikely for every move in a long sequence to incur a positive but small improvement in the cut weight.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.