Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models (2305.15598v3)

Published 24 May 2023 in cs.LG and stat.ML

Abstract: Neural networks often operate in the overparameterized regime, in which there are far more parameters than training samples, allowing the training data to be fit perfectly. That is, training the network effectively learns an interpolating function, and properties of the interpolant affect predictions the network will make on new samples. This manuscript explores how properties of such functions learned by neural networks of depth greater than two layers. Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs. The representation cost of a function induced by a neural network architecture is the minimum sum of squared weights needed for the network to represent the function; it reflects the function space bias associated with the architecture. Our results show that adding additional linear layers to the input side of a shallow ReLU network yields a representation cost favoring functions with low mixed variation - that is, it has limited variation in directions orthogonal to a low-dimensional subspace and can be well approximated by a single- or multi-index model. Such functions may be represented by the composition of a function with low two-layer representation cost and a low-rank linear operator. Our experiments confirm this behavior in standard network training regimes. They additionally show that linear layers can improve generalization and the learned network is well-aligned with the true latent low-dimensional linear subspace when data is generated using a multi-index model.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets