Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models (2305.15598v4)

Published 24 May 2023 in cs.LG and stat.ML

Abstract: Neural networks often operate in the overparameterized regime, in which there are far more parameters than training samples, allowing the training data to be fit perfectly. That is, training the network effectively learns an interpolating function, and properties of the interpolant affect predictions the network will make on new samples. This manuscript explores how properties of such functions learned by neural networks of depth greater than two layers. Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs. The representation cost of a function induced by a neural network architecture is the minimum sum of squared weights needed for the network to represent the function; it reflects the function space bias associated with the architecture. Our results show that adding additional linear layers to the input side of a shallow ReLU network yields a representation cost favoring functions with low mixed variation -- that is, it has limited variation in directions orthogonal to a low-dimensional subspace and can be well approximated by a single- or multi-index model. This bias occurs because minimizing the sum of squared weights of the linear layers is equivalent to minimizing a low-rank promoting Schatten quasi-norm of a single "virtual" weight matrix. Our experiments confirm this behavior in standard network training regimes. They additionally show that linear layers can improve generalization and the learned network is well-aligned with the true latent low-dimensional linear subspace when data is generated using a multi-index model.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets