Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Understanding Label Bias in Single Positive Multi-Label Learning (2305.15584v1)

Published 24 May 2023 in cs.LG and cs.CV

Abstract: Annotating data for multi-label classification is prohibitively expensive because every category of interest must be confirmed to be present or absent. Recent work on single positive multi-label (SPML) learning shows that it is possible to train effective multi-label classifiers using only one positive label per image. However, the standard benchmarks for SPML are derived from traditional multi-label classification datasets by retaining one positive label for each training example (chosen uniformly at random) and discarding all other labels. In realistic settings it is not likely that positive labels are chosen uniformly at random. This work introduces protocols for studying label bias in SPML and provides new empirical results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.