Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Advanced Medical Image Representation for Efficient Processing and Transfer in Multisite Clouds (2305.15411v1)

Published 29 Apr 2023 in eess.IV, cs.CV, and cs.DC

Abstract: An important topic in medical research is the process of improving the images obtained from medical devices. As a consequence, there is also a need to improve medical image resolution and analysis. Another issue in this field is the large amount of stored medical data [16]. Human brain databases at medical institutes, for example, can accumulate tens of Terabytes of data per year. In this paper, we propose a novel medical image format representation based on multiple data structures that improve the information maintained in the medical images. The new representation keeps additional metadata information, such as the image class or tags for the objects found in the image. We defined our own ontology to help us classify the objects found in medical images using a multilayer neural network. As we generally deal with large data sets, we used the MapReduce paradigm in the Cloud environment to speed up the image processing. To optimize the transfer between Cloud nodes and to reduce the preprocessing time, we also propose a data compression method based on deduplication. We test our solution for image representation and efficient data transfer in a multisite cloud environment. Our proposed solution optimizes the data transfer with a time improvement of 27% on average.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.