Papers
Topics
Authors
Recent
2000 character limit reached

Sentiment Analysis Using Aligned Word Embeddings for Uralic Languages (2305.15380v1)

Published 24 May 2023 in cs.CL

Abstract: In this paper, we present an approach for translating word embeddings from a majority language into 4 minority languages: Erzya, Moksha, Udmurt and Komi-Zyrian. Furthermore, we align these word embeddings and present a novel neural network model that is trained on English data to conduct sentiment analysis and then applied on endangered language data through the aligned word embeddings. To test our model, we annotated a small sentiment analysis corpus for the 4 endangered languages and Finnish. Our method reached at least 56\% accuracy for each endangered language. The models and the sentiment corpus will be released together with this paper. Our research shows that state-of-the-art neural models can be used with endangered languages with the only requirement being a dictionary between the endangered language and a majority language.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.