Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Inverse optimal control for averaged cost per stage linear quadratic regulators (2305.15332v1)

Published 24 May 2023 in math.OC, cs.SY, and eess.SY

Abstract: Inverse Optimal Control (IOC) is a powerful framework for learning a behaviour from observations of experts. The framework aims to identify the underlying cost function that the observed optimal trajectories (the experts' behaviour) are optimal with respect to. In this work, we considered the case of identifying the cost and the feedback law from observed trajectories generated by an ``average cost per stage" linear quadratic regulator. We show that identifying the cost is in general an ill-posed problem, and give necessary and sufficient conditions for non-identifiability. Moreover, despite the fact that the problem is in general ill-posed, we construct an estimator for the cost function and show that the control gain corresponding to this estimator is a statistically consistent estimator for the true underlying control gain. In fact, the constructed estimator is based on convex optimization, and hence the proved statistical consistency is also observed in practice. We illustrate the latter by applying the method on a simulation example from rehabilitation robotics.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)