Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Intersection of Longest Cycle and Largest Bond in 3-Connected Graphs (2305.15110v2)

Published 22 May 2023 in math.CO and cs.DM

Abstract: A bond in a graph is a minimal nonempty edge-cut. A connected graph $G$ is dual Hamiltonian if the vertex set can be partitioned into two subsets $X$ and $Y$ such that the subgraphs induced by $X$ and $Y$ are both trees. There is much interest in studying the longest cycles and largest bonds in graphs. H. Wu conjectured that any longest cycle must meet any largest bond in a simple 3-connected graph. In this paper, the author proves that the above conjecture is true for certain classes of 3-connected graphs: Let $G$ be a simple 3-connected graph with $n$ vertices and $m$ edges. Suppose $c(G)$ is the size of a longest cycle, and $c*(G)$ is the size of a largest bond. Then each longest cycle meets each largest bond if either $c(G) \geq n - 3$ or $c*(G) \geq m - n - 1$. Sanford determined in her Ph.D. thesis the cycle spectrum of the well-known generalized Petersen graph $P(n, 2)$ ($n$ is odd) and $P(n, 3)$ ($n$ is even). Flynn proved in her honors thesis that any generalized Petersen graph $P(n, k)$ is dual Hamiltonian. The author studies the bond spectrum (called the co-spectrum) of the generalized Petersen graphs and extends Flynn's result by proving that in any generalized Petersen graph $P(n, k)$, $1 \leq k < \frac{n}{2}$, the co-spectrum of $P(n, k)$ is ${3, 4, 5, ..., n+2}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.