Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Masking Rate Schedules for MLM Pretraining (2305.15096v3)

Published 24 May 2023 in cs.CL and cs.AI

Abstract: Most works on transformers trained with the Masked Language Modeling (MLM) objective use the original BERT model's fixed masking rate of 15%. We propose to instead dynamically schedule the masking rate throughout training. We find that linearly decreasing the masking rate over the course of pretraining improves average GLUE accuracy by up to 0.46% and 0.25% in BERT-base and BERT-large, respectively, compared to fixed rate baselines. These gains come from exposure to both high and low masking rate regimes, providing benefits from both settings. Our results demonstrate that masking rate scheduling is a simple way to improve the quality of masked LLMs, achieving up to a 1.89x speedup in pretraining for BERT-base as well as a Pareto improvement for BERT-large.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 21 likes.

Upgrade to Pro to view all of the tweets about this paper: