Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Examination of the Robustness of Reference-Free Image Captioning Evaluation Metrics (2305.14998v2)

Published 24 May 2023 in cs.CL, cs.AI, cs.CV, and cs.LG

Abstract: Recently, reference-free metrics such as CLIPScore (Hessel et al., 2021), UMIC (Lee et al., 2021), and PAC-S (Sarto et al., 2023) have been proposed for automatic reference-free evaluation of image captions. Our focus lies in evaluating the robustness of these metrics in scenarios that require distinguishing between two captions with high lexical overlap but very different meanings. Our findings reveal that despite their high correlation with human judgments, CLIPScore, UMIC, and PAC-S struggle to identify fine-grained errors. While all metrics exhibit strong sensitivity to visual grounding errors, their sensitivity to caption implausibility errors is limited. Furthermore, we found that all metrics are sensitive to variations in the size of image-relevant objects mentioned in the caption, while CLIPScore and PAC-S are also sensitive to the number of mentions of image-relevant objects in the caption. Regarding linguistic aspects of a caption, all metrics show weak comprehension of negation, and CLIPScore and PAC-S are insensitive to the structure of the caption to a great extent. We hope our findings will guide further improvements in reference-free evaluation of image captioning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube