Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improving Factuality of Abstractive Summarization without Sacrificing Summary Quality

Published 24 May 2023 in cs.CL, cs.AI, and cs.LG | (2305.14981v1)

Abstract: Improving factual consistency of abstractive summarization has been a widely studied topic. However, most of the prior works on training factuality-aware models have ignored the negative effect it has on summary quality. We propose EFACTSUM (i.e., Effective Factual Summarization), a candidate summary generation and ranking technique to improve summary factuality without sacrificing summary quality. We show that using a contrastive learning framework with our refined candidate summaries leads to significant gains on both factuality and similarity-based metrics. Specifically, we propose a ranking strategy in which we effectively combine two metrics, thereby preventing any conflict during training. Models trained using our approach show up to 6 points of absolute improvement over the base model with respect to FactCC on XSUM and 11 points on CNN/DM, without negatively affecting either similarity-based metrics or absractiveness.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.