Papers
Topics
Authors
Recent
2000 character limit reached

Accelerated Nonconvex ADMM with Self-Adaptive Penalty for Rank-Constrained Model Identification (2305.14781v2)

Published 24 May 2023 in math.OC, cs.SY, and eess.SY

Abstract: The alternating direction method of multipliers (ADMM) has been widely adopted in low-rank approximation and low-order model identification tasks; however, the performance of nonconvex ADMM is highly reliant on the choice of penalty parameter. To accelerate ADMM for solving rank-constrained identification problems, this paper proposes a new self-adaptive strategy for automatic penalty update. Guided by first-order analysis of the increment of the augmented Lagrangian, the self-adaptive penalty updating enables effective and balanced minimization of both primal and dual residuals and thus ensures a stable convergence. Moreover, improved efficiency can be obtained within the Anderson acceleration scheme. Numerical examples show that the proposed strategy significantly accelerates the convergence of nonconvex ADMM while alleviating the critical reliance on tedious tuning of penalty parameters.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.