Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dual Path Transformer with Partition Attention (2305.14768v1)

Published 24 May 2023 in cs.CV

Abstract: This paper introduces a novel attention mechanism, called dual attention, which is both efficient and effective. The dual attention mechanism consists of two parallel components: local attention generated by Convolutional Neural Networks (CNNs) and long-range attention generated by Vision Transformers (ViTs). To address the high computational complexity and memory footprint of vanilla Multi-Head Self-Attention (MHSA), we introduce a novel Multi-Head Partition-wise Attention (MHPA) mechanism. The partition-wise attention approach models both intra-partition and inter-partition attention simultaneously. Building on the dual attention block and partition-wise attention mechanism, we present a hierarchical vision backbone called DualFormer. We evaluate the effectiveness of our model on several computer vision tasks, including image classification on ImageNet, object detection on COCO, and semantic segmentation on Cityscapes. Specifically, the proposed DualFormer-XS achieves 81.5\% top-1 accuracy on ImageNet, outperforming the recent state-of-the-art MPViT-XS by 0.6\% top-1 accuracy with much higher throughput.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.