Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

BinaryViT: Towards Efficient and Accurate Binary Vision Transformers (2305.14730v3)

Published 24 May 2023 in cs.CV

Abstract: Vision Transformers (ViTs) have emerged as the fundamental architecture for most computer vision fields, but the considerable memory and computation costs hinders their application on resource-limited devices. As one of the most powerful compression methods, binarization reduces the computation of the neural network by quantizing the weights and activation values as $\pm$1. Although existing binarization methods have demonstrated excellent performance on Convolutional Neural Networks (CNNs), the full binarization of ViTs is still under-studied and suffering a significant performance drop. In this paper, we first argue empirically that the severe performance degradation is mainly caused by the weight oscillation in the binarization training and the information distortion in the activation of ViTs. Based on these analyses, we propose $\textbf{BinaryViT}$, an accurate full binarization scheme for ViTs, which pushes the quantization of ViTs to the limit. Specifically, we propose a novel gradient regularization scheme (GRS) for driving a bimodal distribution of the weights to reduce oscillation in binarization training. Moreover, we design an activation shift module (ASM) to adaptively tune the activation distribution to reduce the information distortion caused by binarization. Extensive experiments on ImageNet dataset show that our BinaryViT consistently surpasses the strong baseline by 2.05% and improve the accuracy of fully binarized ViTs to a usable level. Furthermore, our method achieves impressive savings of 16.2$\times$ and 17.7$\times$ in model size and OPs compared to the full-precision DeiT-S.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.