Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning (2305.14502v2)

Published 23 May 2023 in cs.CL, cs.AI, and cs.LG

Abstract: Recent developments in large pre-trained LLMs have enabled unprecedented performance on a variety of downstream tasks. Achieving best performance with these models often leverages in-context learning, where a model performs a (possibly new) task given one or more examples. However, recent work has shown that the choice of examples can have a large impact on task performance and that finding an optimal set of examples is non-trivial. While there are many existing methods for selecting in-context examples, they generally score examples independently, ignoring the dependency between them and the order in which they are provided to the model. In this work, we propose Retrieval for In-Context Learning (RetICL), a learnable method for modeling and optimally selecting examples sequentially for in-context learning. We frame the problem of sequential example selection as a Markov decision process and train an example retriever using reinforcement learning. We evaluate RetICL on math word problem solving and scientific question answering tasks and show that it consistently outperforms or matches heuristic and learnable baselines. We also use case studies to show that RetICL implicitly learns representations of problem solving strategies.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube