Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Prompting Language-Informed Distribution for Compositional Zero-Shot Learning (2305.14428v3)

Published 23 May 2023 in cs.CV

Abstract: Compositional zero-shot learning (CZSL) task aims to recognize unseen compositional visual concepts, e.g., sliced tomatoes, where the model is learned only from the seen compositions, e.g., sliced potatoes and red tomatoes. Thanks to the prompt tuning on large pre-trained visual LLMs such as CLIP, recent literature shows impressively better CZSL performance than traditional vision-based methods. However, the key aspects that impact the generalization to unseen compositions, including the diversity and informativeness of class context, and the entanglement between visual primitives, i.e., state and object, are not properly addressed in existing CLIP-based CZSL literature. In this paper, we propose a model by prompting the language-informed distribution, aka., PLID, for the CZSL task. Specifically, the PLID leverages pre-trained LLMs (LLM) to (i) formulate the language-informed class distributions which are diverse and informative, and (ii) enhance the compositionality of the class embedding. Moreover, a visual-language primitive decomposition (VLPD) module is proposed to dynamically fuse the classification decisions from the compositional and the primitive space. Orthogonal to the existing literature of soft, hard, or distributional prompts, our method advocates prompting the LLM-supported class distributions, leading to a better zero-shot generalization. Experimental results on MIT-States, UT-Zappos, and C-GQA datasets show the superior performance of the PLID to the prior arts. Our code and models are released: https://github.com/Cogito2012/PLID.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.