Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Enhancing Speech Emotion Recognition Through Differentiable Architecture Search (2305.14402v3)

Published 23 May 2023 in cs.SD, cs.LG, and eess.AS

Abstract: Speech Emotion Recognition (SER) is a critical enabler of emotion-aware communication in human-computer interactions. Recent advancements in Deep Learning (DL) have substantially enhanced the performance of SER models through increased model complexity. However, designing optimal DL architectures requires prior experience and experimental evaluations. Encouragingly, Neural Architecture Search (NAS) offers a promising avenue to determine an optimal DL model automatically. In particular, Differentiable Architecture Search (DARTS) is an efficient method of using NAS to search for optimised models. This paper proposes a DARTS-optimised joint CNN and LSTM architecture, to improve SER performance, where the literature informs the selection of CNN and LSTM coupling to offer improved performance. While DARTS has previously been applied to CNN and LSTM combinations, our approach introduces a novel mechanism, particularly in selecting CNN operations using DARTS. In contrast to previous studies, we refrain from imposing constraints on the order of the layers for the CNN within the DARTS cell; instead, we allow DARTS to determine the optimal layer order autonomously. Experimenting with the IEMOCAP and MSP-IMPROV datasets, we demonstrate that our proposed methodology achieves significantly higher SER accuracy than hand-engineering the CNN-LSTM configuration. It also outperforms the best-reported SER results achieved using DARTS on CNN-LSTM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com