Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DirecT2V: Large Language Models are Frame-Level Directors for Zero-Shot Text-to-Video Generation (2305.14330v3)

Published 23 May 2023 in cs.CV, cs.AI, and cs.CL

Abstract: In the paradigm of AI-generated content (AIGC), there has been increasing attention to transferring knowledge from pre-trained text-to-image (T2I) models to text-to-video (T2V) generation. Despite their effectiveness, these frameworks face challenges in maintaining consistent narratives and handling shifts in scene composition or object placement from a single abstract user prompt. Exploring the ability of LLMs to generate time-dependent, frame-by-frame prompts, this paper introduces a new framework, dubbed DirecT2V. DirecT2V leverages instruction-tuned LLMs as directors, enabling the inclusion of time-varying content and facilitating consistent video generation. To maintain temporal consistency and prevent mapping the value to a different object, we equip a diffusion model with a novel value mapping method and dual-softmax filtering, which do not require any additional training. The experimental results validate the effectiveness of our framework in producing visually coherent and storyful videos from abstract user prompts, successfully addressing the challenges of zero-shot video generation.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.