Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Zero-sum Polymatrix Markov Games: Equilibrium Collapse and Efficient Computation of Nash Equilibria (2305.14329v2)

Published 23 May 2023 in cs.GT, cs.MA, and cs.SI

Abstract: The works of (Daskalakis et al., 2009, 2022; Jin et al., 2022; Deng et al., 2023) indicate that computing Nash equilibria in multi-player Markov games is a computationally hard task. This fact raises the question of whether or not computational intractability can be circumvented if one focuses on specific classes of Markov games. One such example is two-player zero-sum Markov games, in which efficient ways to compute a Nash equilibrium are known. Inspired by zero-sum polymatrix normal-form games (Cai et al., 2016), we define a class of zero-sum multi-agent Markov games in which there are only pairwise interactions described by a graph that changes per state. For this class of Markov games, we show that an $\epsilon$-approximate Nash equilibrium can be found efficiently. To do so, we generalize the techniques of (Cai et al., 2016), by showing that the set of coarse-correlated equilibria collapses to the set of Nash equilibria. Afterwards, it is possible to use any algorithm in the literature that computes approximate coarse-correlated equilibria Markovian policies to get an approximate Nash equilibrium.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.