Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Best Defense is a Good Offense: Adversarial Augmentation against Adversarial Attacks (2305.14188v1)

Published 23 May 2023 in cs.LG, cs.CR, and cs.CV

Abstract: Many defenses against adversarial attacks (\eg robust classifiers, randomization, or image purification) use countermeasures put to work only after the attack has been crafted. We adopt a different perspective to introduce $A5$ (Adversarial Augmentation Against Adversarial Attacks), a novel framework including the first certified preemptive defense against adversarial attacks. The main idea is to craft a defensive perturbation to guarantee that any attack (up to a given magnitude) towards the input in hand will fail. To this aim, we leverage existing automatic perturbation analysis tools for neural networks. We study the conditions to apply $A5$ effectively, analyze the importance of the robustness of the to-be-defended classifier, and inspect the appearance of the robustified images. We show effective on-the-fly defensive augmentation with a robustifier network that ignores the ground truth label, and demonstrate the benefits of robustifier and classifier co-training. In our tests, $A5$ consistently beats state of the art certified defenses on MNIST, CIFAR10, FashionMNIST and Tinyimagenet. We also show how to apply $A5$ to create certifiably robust physical objects. Our code at https://github.com/NVlabs/A5 allows experimenting on a wide range of scenarios beyond the man-in-the-middle attack tested here, including the case of physical attacks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com