Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

TVTSv2: Learning Out-of-the-box Spatiotemporal Visual Representations at Scale (2305.14173v1)

Published 23 May 2023 in cs.CV and cs.AI

Abstract: The ultimate goal for foundation models is realizing task-agnostic, i.e., supporting out-of-the-box usage without task-specific fine-tuning. Although breakthroughs have been made in natural language processing and image representation learning, it is still challenging for video models to reach it due to the increasing uncertainty of spatiotemporal signals. To ease training, existing works leverage image foundation models' prior knowledge and equip them with efficient temporal modules. Despite the satisfactory fine-tuning performance, we empirically find they fall short of out-of-the-box usage, given the even degraded performance in zero-shot/linear protocols compared to their baseline counterparts. In this work, we analyze the factor that leads to degradation from the perspective of language supervision distortion. We argue that tuning a text encoder end-to-end, as done in previous work, is suboptimal since it may overfit in terms of styles, thereby losing its original generalization ability to capture the semantics of various language registers. The overfitted text encoder, in turn, provides a harmful supervision signal, degrading the video representation. To tackle this issue, we propose a degradation-free pre-training strategy to retain the generalization ability of the text encoder via freezing shallow layers while enabling the task-related semantics capturing in tunable deep layers. As for the training objective, we adopted the transcript sorting task in TVTS incorporated with masking techniques to enable scalable training. As a result, we produce a series of models, dubbed TVTSv2, with up to one billion parameters. We achieve new state-of-the-arts on various video benchmarks with a frozen backbone, surpassing the recent ImageBind, InternVideo, etc. Code is available at https://github.com/TencentARC/TVTS.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube