Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dr.ICL: Demonstration-Retrieved In-context Learning (2305.14128v1)

Published 23 May 2023 in cs.CL and cs.AI

Abstract: In-context learning (ICL), teaching a LLM to perform a task with few-shot demonstrations rather than adjusting the model parameters, has emerged as a strong paradigm for using LLMs. While early studies primarily used a fixed or random set of demonstrations for all test queries, recent research suggests that retrieving semantically similar demonstrations to the input from a pool of available demonstrations results in better performance. This work expands the applicability of retrieval-based ICL approaches by demonstrating that even simple word-overlap similarity measures such as BM25 outperform randomly selected demonstrations. Furthermore, we extend the success of retrieval-based ICL to instruction-finetuned LLMs as well as Chain-of-Thought (CoT) prompting. For instruction-finetuned LLMs, we find that although a model has already seen the training data at training time, retrieving demonstrations from the training data at test time yields better results compared to using no demonstrations or random demonstrations. Last but not least, we train a task-specific demonstration retriever that outperforms off-the-shelf retrievers.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.