Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Node-wise Diffusion for Scalable Graph Learning (2305.14000v3)

Published 23 May 2023 in cs.SI

Abstract: Graph Neural Networks (GNNs) have shown superior performance for semi-supervised learning of numerous web applications, such as classification on web services and pages, analysis of online social networks, and recommendation in e-commerce. The state of the art derives representations for all nodes in graphs following the same diffusion (message passing) model without discriminating their uniqueness. However, (i) labeled nodes involved in model training usually account for a small portion of graphs in the semisupervised setting, and (ii) different nodes locate at different graph local contexts and it inevitably degrades the representation qualities if treating them undistinguishedly in diffusion. To address the above issues, we develop NDM, a universal node-wise diffusion model, to capture the unique characteristics of each node in diffusion, by which NDM is able to yield high-quality node representations. In what follows, we customize NDM for semisupervised learning and design the NIGCN model. In particular, NIGCN advances the efficiency significantly since it (i) produces representations for labeled nodes only and (ii) adopts well-designed neighbor sampling techniques tailored for node representation generation. Extensive experimental results on various types of web datasets, including citation, social and co-purchasing graphs, not only verify the state-of-the-art effectiveness of NIGCN but also strongly support the remarkable scalability of NIGCN. In particular, NIGCN completes representation generation and training within 10 seconds on the dataset with hundreds of millions of nodes and billions of edges, up to orders of magnitude speedups over the baselines, while achieving the highest F1-scores on classification.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.